
Classes	&	Objects	pt.	2	

Ch.	7	

Private	Accessor	

•  You	may	not	want	your	instance	variables	
accessed	directly	

•  Using	private	restricts	access	to	that	class	
public class Student{
 private int studentID;
 private String name;
 . . .

Only	accessed	
within	Student	

GeCer/SeCer	Methods	

•  For	every	private	instance	variable	in	your	
class,	you	need	at	least	one	“get”	and	one	
“set”	method	

// Add a method, inc(), to increment a Time value by 1
// second. min and sec should not reach 60 or above.
class Time {
 private int hour, min, sec;
 Time(int hour, int min, int sec) {
 this.hour = hour;
 this.min = min;
 this.sec = sec;
 }
 // your method goes here

// Write a class called Rational. Rational will consist
// of a numerator and a denominator – both fields are
// private. Rational will also have a method called times
// that will multiply one Rational number by another, and
// return the result as a Rational number. It is not
// necessary to reduce fractions to lowest terms.

Bubble	Sort	

•  Of	all	common	sorLng	algorithms,	this	is	
probably	the	least	efficient	–	but	the	easiest	to	
implement.	

WriLng	to	a	file	
import java.io.*;
public class WriteTest{
 public static void main (String[] args){
 FileWriter f;
 PrintWriter p;

 try {
 f = new FileWriter("output.txt");
 p = new PrintWriter(f);
 p.println("First Line");
 p.print("Second line, no carriage return ");
 p.printf("Shortened Pi: %.2f", Math.PI);
 p.close();
 }
 catch(IOException ex) {
 System.out.println(ex.toString() + " file error.");
 }

 }
}

DiverLng	input/output	stream	

>		writes	to	a	specified	output	file.	Overwrites	if	
needed.	
>>		writes	to	a	specified	output	file.	Doesn’t	
overwrite,	only	appends.	
<		reads	input	from	a	specified	file.	
	
Ex:	
$ java HelloWorld > HelloWorld.txt

Arrays	of	Objects	

•  Need	to	make	sure	you	iniLalize	objects	in	
array,	not	just	the	array	itself.	
– NullPointerExcepLon	

StaLc	vs.	Instance	Methods	

•  Instance	methods	are	called	by	individual	objects	
•  StaLc	methods	are	called	by	the	class	
•  Calling	a	method	from	the	same	class	only	
requires	the	method	idenLfier…no	qualifier	such	
as	object	or	class	name	

•  Why	use	staLc	methods?	We	don’t	always	need	
an	instance	of	a	class	in	order	to	call	a	method	–	
ex:	Math	class	

StaLc	variables	

•  A	staLc	variable	maintains	the	same	value	
across	all	instances	of	a	class.	
– As	opposed	to	instance	variables,	in	which	each	
object	has	its	own	instance	variable	

Calling	Methods	

•  Instance	to	Instance	
•  Instance	to	StaLc	
•  StaLc	to	Instance	

