
Classes	&	Objects	

Ch.	7	

Recall	

•  We’ve	used	objects	in	the	past	–	of	type	
String,	Scanner,	File	

•  These	are	data	types	that	serve	special	and	
unique	purposes	

•  We	can	invent	our	own	data-types	that	have	
special	data	and	acAons,	and	create	objects	of	
that	data-type	

A	simple	data	type	

•  What	are	some	data	that	all	students	have?	
•  What	are	some	acAons	that	all	students	can	
do?	

Student	Class	

Elements	of	a	simple	class	

•  A	class	describes	data	that	belongs	to	an	
object,	and	operaAons	that	object	can	
perform	

•  Instance	Variables	–	The	data	belonging	to	
the	class.	aka	fields	

•  Instance	Methods	–	The	methods	belonging	
to	the	class.	aka	member	methods	

public class Person{
 int age;
 String name;
 double height;
}

public class PersonTest{
 public static void main(String[] args){
 Person p = new Person();
 p.age = 25;
 p.name = "Jerry";
 p.height = 70.5;
 printPerson(p);
 }
 public static void printPerson(Person p){
 System.out.println("Age: " + p.age);
 System.out.println("Name: " + p.name);
 System.out.println("Height: " + p.height);
 }
}

In	general,	your	
class	should	be	
kept	in	a	separate	
java	file	

// What is printed by this program?

public class PersonTest{
 public static void main(String[] args){
 Person p = new Person();
 p.age = 25;
 p.name = "Jerry";
 p.height = 70.5;
 makeOlder(p);
 printPerson(p);
 }
 public static void printPerson(Person p){
 System.out.println("Age: " + p.age);
 System.out.println("Name: " + p.name);
 System.out.println("Height: " + p.height);
 }
 public static void makeOlder(Person q){
 q.age++;
 }
}

public class Person{
 int age;
 String name;
 double height;
}
	

Constructors	

•  Used	when	we	want	to	iniAalize	our	instance	
variables	during	the	same	step	we	iniAalize	
our	objects	

•  Will	always	have	the	same	name	as	our	class	
•  If	we	do	not	create	a	constructor,	we	get	a	
default	constructor	

Overloading	Constructors	

•  Similarly	to	how	we	overloaded	methods,	we	
can	overload	constructors	
– The	Constructor	name	remains	the	same	(it	will	
always	be	the	same	name	as	the	class)	

– The	parameters	of	constructors	will	be	different	

Exercise	

•  Write	a	method	for	our	Student	class	called	
equals	that	determines	if	two	student	objects	
are	equal	(as	in,	all	of	their	instance	variables	
are	the	same),	and	returns	true/false	(hint:	
parameter	is	Student	object;	method	returns	
boolean	value)	

Exercise	

•  Write	a	class	named	BankAccount	with	the	
following:	
–  Instance	variables:	balance	(double),	name	
(String),	currency	(String)	–	this	will	refer	to	USD,	
CAD,	JPY,	or	any	other	currency	of	the	world.	

–  Instance	methods:	update	balance	(changes	
object’s	balance),	print	balance	(prints	out	
balance),	close	account	(sets	balance	to	zero)	

– Constructors:	One	constructor	that	only	iniAalizes	
name,	another	that	iniAalizes	all	3	instance	
variables	

