
CMPS 12A – Fall 2017
Programming Assignment 5: Payroll for Startup Company
Due: Friday December 8 @ 11:59pm

Overview
In this assignment you will be implementing 7 total classes that will simulate a
payroll of employees of a startup company. The superclass Employee is provided
in examples/program5, and the first six classes below will subclass from
Employee.

All instance variables are private and thus require necessary getter and setter
methods. All instance methods are public.

BoardMember extends Employee
 BoardMember(int yearsWorked); // constructor

final double YEARLY_BONUS = 20000; // $/year
final int PAID_VACATION = 20; // days
final int UNPAID_VACATION = 10; // days
final int SICK_LEAVE = 10; // days
final double HEALTH_INSURANCE = 20000;//$/year
final double INCOME = 200000; // $/year

int usedUnpaidVacation; // keeps track of how much

 //unpaid vacation has been used.
int usedVacation; // keeps track of how much paid vacation

 // has been used.
int usedSickDays; // keeps track of how many sick days

 // have been used.
void usePaidVacation(); // adds one to usedVacation

 //instance variable.
void useUnpaidVacation(); // adds one to

 // usedUnpaidVacation
void useSickDay(); // adds one to usedSickDays
void workYear(); // adds one to yearsWorked.
double YTDValue(); /* overridden from Employee class.
YTDValue() is calculated by taking the sum of:

YEARLY_BONUS
HEALTH_INSURANCE
INCOME
PAID_VACATION * (INCOME / 260)
(SICK_LEAVE – usedSickDays) * ((INCOME /
260) / 2) */

int yearsTillRetirement(); /* overridden from Employee
class. This should be rounded up to the nearest int. The
calculation should take place as floating point arithmetic to ensure
precision (hint: cast as double where necessary). This number
should not be below zero. This is calculated by: 35 –

(yearsWorked + (usedUnpaidVacation / 260) +
((usedVacation / 260) * 2) + (usedSickDays /
260))
*/

Engineer extends Employee
 Engineer(int yearsWorked); // constructor

final double YEARLY_BONUS = 5000; // $/year
final int PAID_VACATION = 10; // days)
final int UNPAID_VACATION = 10; days
final double HEALTH_INSURANCE = 10000; // $/year
final double INCOME = 100000; // $/year
int usedUnpaidVacation; // keeps track of how much
 //unpaid vacation has been used.
int usedVacation; // keeps track of how much paid vacation

 // has been used.
void usePaidVacation(); // adds one to usedVacation

 // instance variable.
void useUnpaidVacation(); // adds one to

 // usedUnpaidVacation
void workYear(); // Adds one to yearsWorked.
double YTDValue(); /* overridden from Employee class.
This is calculated by taking the sum of:

YEARLY_BONUS
HEALTH_INSURANCE
INCOME
PAID_VACATION * (INCOME / 260) */

int yearsTillRetirement(); /* Overridden from
Employee class. This should be rounded up to the nearest int.
The calculation should take place as floating point arithmetic to
ensure precision (hint: cast as double where necessary). This
number should not be below zero. This is calculated by: 35 –
(yearsWorked + (usedUnpaidVacation / 260) +
((usedVacation / 260) * 2))
*/

Accountant extends Employee
 Accountant(int yearsWorked); // constructor

final int PAID_VACATION = 10; // days
final int UNPAID_VACATION = 10; // days
final double HEALTH_INSURANCE = 15000; // $/year
final double INCOME = 125000; // $/year
int usedUnpaidVacation; // keeps track of how much

 //unpaid vacation has been used.
int usedVacation; // keeps track of how much paid vacation

 // has been used.

void usePaidVacation(); // adds one to usedVacation
 // instance variable.

void useUnpaidVacation(); // adds one to
 // usedUnpaidVacation.

void workYear(); // Adds one to yearsWorked.
double YTDValue(); /* overridden from Employee class.
This is calculated by taking the sum of:

HEALTH_INSURANCE
INCOME
PAID_VACATION * (INCOME / 260)
*/

int yearsTillRetirement(); /* Overridden from
Employee class. This should be rounded up to the nearest int.
The calculation should take place as floating point arithmetic to
ensure precision (hint: cast as double where necessary). This
number should not be below zero. This is calculated by: 35 –
(yearsWorked + (usedUnpaidVacation / 260) +
((usedVacation / 260) * 2))
*/

Custodian extends Employee
 Custodian(int yearsWorked); // constructor

final int PAID_VACATION = 10; // days
final int UNPAID_VACATION = 10; // days
final double HEALTH_INSURANCE = 10000; // $/year
final double INCOME = 50000; // $/year
int usedUnpaidVacation; // keeps track of how much

 //unpaid vacation has been used.
int usedVacation; // keeps track of how much paid vacation

 // has been used.
void usePaidVacation(); // adds one to usedVacation
void useUnpaidVacation(); // adds one to

 // usedUnpaidVacation
void workYear(); // adds one to yearsWorked.
double YTDValue(); /* overridden from Employee class.
This is calculated by taking the sum of:

HEALTH_INSURANCE
INCOME
PAID_VACATION * (INCOME / 260)
*/

int yearsTillRetirement(); /* : must be overridden from
Employee class. This should be rounded up to the nearest int.
The calculation should take place as floating point arithmetic to
ensure precision (hint: cast as double where necessary). This
number should not be below zero. This is calculated by: 35 –

(yearsWorked + (usedUnpaidVacation / 260) +
((usedVacation / 260) * 2))
*/

Marketer extends Employee
 Marketer(int yearsWorked); // constructor

final double CLIENT_BONUS = 2000; // per new client
final int PAID_VACATION = 10; // days
final int UNPAID_VACATION = 10; // days
final double HEALTH_INSURANCE = 10000; // $/year
final double INCOME = 100000; // $/year
int numBonuses; // keeps track of how many commission

 // based bonuses the employee received.
int usedUnpaidVacation; // keeps track of how much

 //unpaid vacation has been used.
int usedVacation; // keeps track of how much paid vacation

 // has been used.
void signDeal(); // adds one to numBonuses.
void usePaidVacation(); // adds one to usedVacation
void useUnpaidVacation(); // adds one to

 // usedUnpaidVacation
void workYear(); // Adds one to yearsWorked.
double YTDValue(); /* Overridden from Employee class.
This is calculated by taking the sum of:

CLIENT_BONUS * numBonuses
HEALTH_INSURANCE
INCOME
PAID_VACATION * (INCOME / 260)
*/

int yearsTillRetirement(); // Overridden from
Employee class. This should be rounded up to the nearest int.
The calculation should take place as floating point arithmetic to
ensure precision (hint: cast as double where necessary). This
number should not be below zero. This is calculated by: 35 –
(yearsWorked + (usedUnpaidVacation / 260) +
((usedVacation / 260) * 2))
*/

Intern extends Employee
 Intern(int yearsWorked); // constructor

final int UNPAID_VACATION = 10; // days
final double HEALTH_INSURANCE = 5000; // $/year
final double INCOME = 40000; // $/year
int usedUnpaidVacation; // keeps track of how much

 //unpaid vacation has been used.

void useUnpaidVacation(); // adds one to
 // usedUnpaidVacation

void workYear(); // Adds one to yearsWorked.
double YTDValue(); /* Overridden from Employee class.
This is calculated by taking the sum of:

HEALTH_INSURANCE
INCOME
*/

int yearsTillRetirement(); /* Overridden from
Employee class. This should be rounded up to the nearest int.
The calculation should take place as floating point arithmetic to
ensure precision (hint: cast as double where necessary). This is
calculated by: 35 – (yearsWorked + (usedUnpaidVacation
/ 260))
*/

Payroll – This class will not explicitly subclass from anything. It will
have the following instance variables and methods:

Payroll(int x); // Constructor
Employee[] employees; // array of x Employee objects.
 // See constructor.
void sortEmployeesByRetirement(); /* sort employees
in descending order of when the employee will retire. Employees
retiring the soonest will go at the beginning of the array. */
void sortEmployeesByCost(); /* sort employees in
descending order of the YTDValue() of each employee.
Employees having the highest YTDValue() will go at the
beginning of the array. */

What to turn in
Submit a zip file of all 7 classes.

Grading Rubric
Each class is worth 2 points. One point will be taken off for the following:
improper indentation, lack of comments, unnecessary compiler errors. This
program is graded out of 10 points, so any additional points (you can earn up to
15) will count toward your overall programming assignment points.

